Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588412

RESUMO

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Assuntos
Hemípteros , MicroRNAs , Oryza , Animais , Interferência de RNA , MicroRNAs/genética , MicroRNAs/metabolismo , Saliva , Hemípteros/fisiologia , Imunidade Vegetal/genética , Oryza/genética
2.
Sci Adv ; 10(17): eadk3852, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38657063

RESUMO

Many insect pests, including the brown planthopper (BPH), undergo windborne migration that is challenging to observe and track. It remains controversial about their migration patterns and largely unknown regarding the underlying genetic basis. By analyzing 360 whole genomes from around the globe, we clarify the genetic sources of worldwide BPHs and illuminate a landscape of BPH migration showing that East Asian populations perform closed-circuit journeys between Indochina and the Far East, while populations of Malay Archipelago and South Asia undergo one-way migration to Indochina. We further find round-trip migration accelerates population differentiation, with highly diverged regions enriching in a gene desert chromosome that is simultaneously the speciation hotspot between BPH and related species. This study not only shows the power of applying genomic approaches to demystify the migration in windborne migrants but also enhances our understanding of how seasonal movements affect speciation and evolution in insects.


Assuntos
Migração Animal , Genômica , Vento , Animais , Genômica/métodos , Hemípteros/genética , Genoma de Inseto , Genética Populacional
3.
Rev Sci Instrum ; 95(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466030

RESUMO

Heat capacity is a fundamental thermodynamic property of a substance. Although heat capacity values and related thermodynamic functions are available for many materials, low-temperature heat capacity measurements, especially for novel materials, can still provide valuable insights for research in physics, chemistry, thermodynamics, and other fields. Reliable low-temperature heat capacity data are typically measured using classical adiabatic calorimeters, which use liquid helium as the refrigerant to provide a cryogenic environment for heat capacity measurements. However, liquid helium is not only expensive but also not easy to obtain, which greatly limits the application of adiabatic calorimetry. In this work, an accurate adiabatic calorimeter equipped with a Gifford-MacMahon refrigerator was designed and constructed for measuring the heat capacity of condensed matter in the temperature range from 4 to 100 K. The Gifford-MacMahon refrigerator was utilized to provide a stable liquid helium-free cryogenic environment. A simple mechanical thermal switch assembly was designed to facilitate switching between the refrigeration mode and the adiabatic measurement mode of the calorimeter. Based on the measurement results of standard reference materials, the optimized repeatability and accuracy of heat capacity measurements were determined to be within 0.8% and 1.5%, respectively. The heat capacity of α-Fe2O3 nanoparticles was also investigated with this device. Furthermore, this adiabatic calorimeter only requires electricity to operate in the liquid helium temperature range, which may significantly advance the research on low-temperature heat capacity based on adiabatic calorimetry.

4.
Commun Biol ; 7(1): 257, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431762

RESUMO

Herbivorous insects employ an array of salivary proteins to aid feeding. However, the mechanisms behind the recruitment and evolution of these genes to mediate plant-insect interactions remain poorly understood. Here, we report a potential horizontal gene transfer (HGT) event from bacteria to an ancestral bug of Eutrichophora. The acquired genes subsequently underwent duplications and evolved through co-option. We annotated them as horizontal-transferred, Eutrichophora-specific salivary protein (HESPs) according to their origin and function. In Riptortus pedestris (Coreoidea), all nine HESPs are secreted into plants during feeding. The RpHESP4 to RpHESP8 are recently duplicated and found to be indispensable for salivary sheath formation. Silencing of RpHESP4-8 increases the difficulty of R. pedestris in probing the soybean, and the treated insects display a decreased survivability. Although silencing the other RpHESPs does not affect the salivary sheath formation, negative effects are also observed. In Pyrrhocoris apterus (Pyrrhocoroidea), five out of six PaHESPs are secretory salivary proteins, with PaHESP3 being critical for insect survival. The PaHESP5, while important for insects, no longer functions as a salivary protein. Our results provide insight into the potential origin of insect saliva and shed light on the evolution of salivary proteins.


Assuntos
Transferência Genética Horizontal , Heterópteros , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Heterópteros/genética , Heterópteros/metabolismo , Proteínas e Peptídeos Salivares/genética , Proteínas e Peptídeos Salivares/metabolismo
5.
BMC Genomics ; 25(1): 53, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212677

RESUMO

BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.


Assuntos
Heterópteros , Transcriptoma , Animais , Heterópteros/genética , Glândulas Salivares , Perfilação da Expressão Gênica/métodos , Saliva
6.
Insect Sci ; 31(1): 91-105, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37334667

RESUMO

Apolipoprotein D (ApoD), a member of the lipocalin superfamily of proteins, is involved in lipid transport and stress resistance. Whereas only a single copy of the ApoD gene is found in humans and some other vertebrates, there are typically several ApoD-like genes in insects. To date, there have been relatively few studies that have examined the evolution and functional differentiation of ApoD-like genes in insects, particularly hemi-metabolous insects. In this study, we identified 10 ApoD-like genes (NlApoD1-10) with distinct spatiotemporal expression patterns in Nilaparvata lugens (BPH), which is an important pest of rice. NlApoD1-10 were found to be distributed on 3 chromosomes in a tandem array of NlApoD1/2, NlApoD3-5, and NlApoD7/8, and show sequence and gene structural divergence in the coding regions, indicating that multiple gene duplication events occurred during evolution. Phylogenetic analysis revealed that NlApoD1-10 can be clustered into 5 clades, with NlApoD3-5 and NlApoD7/8 potentially evolving exclusively in the Delphacidae family. Functional screening using an RNA interference approach revealed that only NlApoD2 was essential for BPH development and survival, whereas NlApoD4/5 are highly expressed in testes, and might play roles in reproduction. Moreover, stress response analysis revealed that NlApoD3-5/9, NlApoD3-5, and NlApoD9 were up-regulated after treatment with lipopolysaccharide, H2 O2 , and ultraviolet-C, respectively, indicating their potential roles in stress resistance.


Assuntos
Hemípteros , Animais , Apolipoproteínas D/genética , Apolipoproteínas D/metabolismo , Hemípteros/fisiologia , Filogenia , Interferência de RNA
7.
Nat Commun ; 14(1): 7264, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945658

RESUMO

Non-retroviral endogenous viral elements (nrEVEs) are widely dispersed throughout the genomes of eukaryotes. Although nrEVEs are known to be involved in host antiviral immunity, it remains an open question whether they can be domesticated as functional proteins to serve cellular innovations in arthropods. In this study, we found that endogenous toti-like viral elements (ToEVEs) are ubiquitously integrated into the genomes of three planthopper species, with highly variable distributions and polymorphism levels in planthopper populations. Three ToEVEs display exon‒intron structures and active transcription, suggesting that they might have been domesticated by planthoppers. CRISPR/Cas9 experiments revealed that one ToEVE in Nilaparvata lugens, NlToEVE14, has been co-opted by its host and plays essential roles in planthopper development and fecundity. Large-scale analysis of ToEVEs in arthropod genomes indicated that the number of arthropod nrEVEs is currently underestimated and that they may contribute to the functional diversity of arthropod genes.


Assuntos
Artrópodes , Hemípteros , Animais , Artrópodes/genética , Hemípteros/genética , Retroviridae
8.
Mol Biol Evol ; 40(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37804524

RESUMO

Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.


Assuntos
Afídeos , Hemípteros , Animais , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Afídeos/metabolismo , Proteínas e Peptídeos Salivares/genética
9.
Pest Manag Sci ; 79(12): 4809-4818, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37483070

RESUMO

BACKGROUND: The bean bug, Riptortus pedestris, is known to cause significant economic losses in soybean crops due to its seed-sucking behavior, but the mechanism of its adaptation to lipid-rich seeds remains poorly understood. To exploit potential target genes for controlling this pest, neutral lipases are functionally characterized in this study. RESULTS: In this study, a total of 69 lipases were identified in R. pedestris, including 35 neutral lipases that underwent significant expansion. The phylogeny, expression patterns, and catalytic capacity of neutral lipases were investigated and we selected six salivary gland-specific, eight gut-specific, and three ovary-specific genes for functional analysis. All three ovary-specific neutral lipases (Chr1.3195, Chr1.0994, and Chr5.0087) are critical for insect reproduction, while a few gut-specific neutral lipases (Chr4.0221 and Chr1.3207) influence insect survivorship or weight gain. In contrast, no significant phenotype change is observed when silencing salivary gland-specific neutral lipases. CONCLUSION: The lipases Chr1.3195, Chr1.0994, Chr5.0087, Chr4.0221, and Chr1.3207 are essential for R. pedestris feeding and reproduction, and the insect is highly sensitive to their deficiency, suggesting that neutral lipases are promising candidates for application in RNAi-based control of this destructive pest. © 2023 Society of Chemical Industry.


Assuntos
Heterópteros , Animais , Feminino , Heterópteros/genética , Reprodução , Glycine max/genética , Sementes
10.
BMC Genomics ; 24(1): 353, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365539

RESUMO

BACKGROUND: As one of the components of visual photopigments in photoreceptor cells, opsin exhibits different spectral peaks and plays crucial roles in visual function. Besides, it is discovered to evolve other functions despite color vision. However, research on its unconventional function is limited nowadays. With the increase in genome database numbers, various numbers and types of opsins have been identified in insects due to gene duplications or losses. The Nilaparvata lugens (Hemiptera) is a rice pest known for its long-distance migration capability. In this study, opsins were identified in N. lugens and characterized by genome and transcriptome analyses. Meanwhile, RNA interference (RNAi) was carried out to investigate the functions of opsins, and then the Illumina Novaseq 6000 platform-based transcriptome sequencing was performed to reveal gene expression patterns. RESULTS: Four opsins belonging to G protein-coupled receptors were identified in the N. lugens genome, including one long-sensitive opsin (Nllw) together with two ultraviolet-sensitive opsins (NlUV1/2) and an additional new opsin with hypothesized UV peak sensitivity (NlUV3-like). A tandem array of NlUV1/2 on the chromosome suggested the presence of a gene duplication event, with similar exons distribution. Moreover, as revealed by spatiotemporal expression, the four opsins were highly expressed in eyes with age-different expression levels. Besides, RNAi targeting each of the four opsins did not significantly affect the survival of N. lugens in phytotron, but the silencing of Nllw resulted in the melanization of body color. Further transcriptome analysis revealed that silencing of Nllw resulted in up-regulation of a tyrosine hydroxylase gene (NlTH) and down-regulation of an arylalkylamine-N-acetyltransferases gene (NlaaNAT) in N. lugens, demonstrating that Nllw is involved in body color plastic development via the tyrosine-mediated melanism pathway. CONCLUSIONS: This study provides the first evidence in a Hemipteran insect that an opsin (Nllw) takes part in the regulation of cuticle melanization, confirming a cross-talk between the gene pathways underlying the visual system and the morphological differentiation in insects.


Assuntos
Hemípteros , Opsinas , Animais , Opsinas/genética , Genoma , Hemípteros/metabolismo , Transcriptoma , Perfilação da Expressão Gênica
11.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928081

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Assuntos
Tenuivirus , Viroses , Animais , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Tenuivirus/metabolismo , Insetos Vetores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
12.
Nat Commun ; 14(1): 737, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36759625

RESUMO

Salivary elicitors secreted by herbivorous insects can be perceived by host plants to trigger plant immunity. However, how insects secrete other salivary components to subsequently attenuate the elicitor-induced plant immunity remains poorly understood. Here, we study the small brown planthopper, Laodelphax striatellus salivary sheath protein LsSP1. Using Y2H, BiFC and LUC assays, we show that LsSP1 is secreted into host plants and binds to salivary sheath via mucin-like protein (LsMLP). Rice plants pre-infested with dsLsSP1-treated L. striatellus are less attractive to L. striatellus nymphs than those pre-infected with dsGFP-treated controls. Transgenic rice plants with LsSP1 overexpression rescue the insect feeding defects caused by a deficiency of LsSP1 secretion, consistent with the potential role of LsSP1 in manipulating plant defenses. Our results illustrate the importance of salivary sheath proteins in mediating the interactions between plants and herbivorous insects.


Assuntos
Hemípteros , Oryza , Animais , Oryza/genética , Hemípteros/genética , Herbivoria , Plantas Geneticamente Modificadas , Ninfa
13.
Pest Manag Sci ; 79(1): 415-427, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36177946

RESUMO

BACKGROUND: The brown planthopper (BPH) is one of the most destructive agricultural pests in Asia. RNA interference (RNAi)-mediated pest management has been under development for years, and the selection of appropriate target genes is important for pest-targeted RNAi. C-type lectins (CTLs) are a class of genes that perform a variety of functions, such as the regulation of growth and development. RESULTS: A CTL-S protein named Nllet1, containing a single calcium ion (Ca2+ )-dependent carbohydrate-binding domain (CRD) with a conserved triplet motif QPD was identified and functionally characterized in BPH. Expression profiles at both the transcriptional and translational levels show that Nllet1 accumulates during the serosal cuticle (SC) formation period. Immunofluorescence and immunogold labeling further demonstrated that Nllet1 is located in the serosal endocuticle (en-SC). Maternal RNAi-mediated silencing of Nllet1 disrupted the SC structure, accompanied by a loss of the outward barrier and 100% embryo mortality. Injection of 10 ng dsNllet1 or dsNllet1' per female adult BPH resulted in a total failure of egg hatching. CONCLUSION: Nllet1 is essential for SC formation and embryonic development in BPH, which helps us understand the important roles of CTL-Ss. Additionally, BPH eggs show high sensitivity to the depletion of Nllet1. This study indicates that Nllet1 is a promising candidate gene that can be used to develop RNAi-based control strategies at the BPH egg stage, and it can also be used as a target for developing novel ovicides. © 2022 Society of Chemical Industry.


Assuntos
Interferência de RNA , Feminino , Humanos , Ásia
14.
Arch Virol ; 167(11): 2423-2427, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35999327

RESUMO

A novel chuvirus from a southern green stink bug (Nezara viridula) was identified by RNA sequencing in this study and was tentatively named "Ningbo southern green stink bug chuvirus 1" (NBSGSBV-1). The complete genome sequence of NBSGSBV-1 consists of 11,375 nucleotides, and the genome was found to be circular by 'around-the-genome' reverse transcription polymerase chain reaction (RT-PCR) and Sanger sequencing. Three open reading frames (ORFs) were predicted in the NBSGSBV-1 genome, encoding a large polymerase protein (L protein), a glycoprotein (G protein), and a nucleocapsid protein (N protein). A phylogenetic tree was constructed based on all of the currently available RNA-dependent RNA polymerase amino acid sequences of viruses of the family Chuviridae, and NBSGSBV-1 was found to cluster together with Sanya chuvirus 2 and Hubei odonate virus 11, indicating that NBSGSBV-1 might belong to the genus Odonatavirus. Five conserved sites were identified in the L proteins of NBSGSBV-1 and other chuviruses. The abundance and characteristics of the NBSGSBV-1-derived small interfering RNAs suggested that NBSGSBV-1 actively replicates in the host insect. To the best of our knowledge, this is the first report of a chuvirus identified in a member of the insect family Pentatomidae. The discovery and characterization of NBSGSBV-1 will help us to understand the diversity of chuviruses in insects.


Assuntos
Heterópteros , Animais , Proteínas do Nucleocapsídeo/genética , Nucleotídeos , Filogenia , RNA Polimerase Dependente de RNA/genética , Análise de Sequência de DNA
15.
J Proteomics ; 266: 104670, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35788410

RESUMO

Oviducts are the "traffic hubs" of the female reproductive system, serving as the crucial conduits for egg transportation. By performing LC-MS/MS proteomic detection together with transcriptomic analysis, 80 lateral oviduct-secreted proteins were identified, and 5 genes (NlOdsp, NlOdsp1, NlOdsp2, NlOdsp3 and NlOdsp4) specifically expressed in the oviducts of the brown planthopper Nilaparvata lugens, the most destructive rice pest, were authenticated. qRT-PCR analysis revealed that these genes and proteins were mainly/specifically expressed in the female reproductive system in adulthood. RNA interference (RNAi) against the 5 NlOdsp genes significantly affected the survival rates (3.4% - 68.7% of the control) and fecundities of female adults (3.9% - 57.6% of the control) at 8 d post injection (p.i.). In addition, the lack of NlOdsp1 caused decreases in the gel-like brown secretions inside the lateral oviducts, while increased secretions were found in the dsNlOdsp2-treated groups. In addition, NlOdsp3 is a pleiotropic gene involved in both oocyte development and egg movement through the lateral oviducts, similar to the role of NlOdsp in egg transportation. The results deepen our understanding of oviduct-secreted proteins in female insects and provide novel target genes for RNAi-based insect pest control. SIGNIFICANCE: Oviduct plays a vital role in animal reproductive processes and it serves as the crucial conduit for egg transportation. Though oviduct secretes have been well documented in high animals, the proteomic information of insect oviduct secretes remains poorly understood. The present study revealed 80 oviduct secreted proteins, including 19 unknown proteins, from the rice planthopper, the most destructive rice pest which lay eggs in plant tissues. Five of the 19 proteins were further functionally characterized. The results not only deepen our understanding of the oviduct secreted proteins in insect reproductive biology, but also provide basis for interaction between insects and host plants, and provide novel target genes for RNAi-based insect pest control.


Assuntos
Hemípteros , Oryza , Animais , Cromatografia Líquida , Feminino , Hemípteros/genética , Humanos , Proteínas de Insetos/metabolismo , Oryza/metabolismo , Oviductos , Proteômica/métodos , Interferência de RNA , Espectrometria de Massas em Tandem
16.
Pest Manag Sci ; 78(11): 4589-4598, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35831262

RESUMO

BACKGROUND: RNA interference (RNAi) has potential as a new strategy for pest control. However, the current overemphasis on the control of a single pest increased control costs. The aim of this study was to find a green method of controlling several pests without affecting the natural enemies with a single target gene. One possible RNAi target is the threonyl-tRNA synthetase (ThrRS), which is conserved and plays a significant role in protein biosynthesis. RESULTS: In this study, one threonyl-tRNA synthetase gene (NlthrS) was identified from the brown planthopper (Nilaparvata lugens). Spatio-temporal expression pattern analysis showed that NlthrS was highly expressed in the ovary, late embryogenesis, nymphs and female adults. In addition, RNAi-mediated knockdown of NlthrS caused 85.6% nymph mortality, 100% female infertility, molting disorder, extended nymph duration and shortened adult longevity. Target-specific results were obtained when dsNlthrS was used to interfere with the whiteback planthopper (Sogatella furcifera), small brown planthopper (Laodelphax striatellus), zig-zag winged leafhopper (Inazuma dorsalis) and their natural enemy (green mirid bug, Cyrtorhinus lividipennis). In addition, dsNlthrS could cause high mortalities of three species of planthoppers (85.6-100%), while only dsNlthrS-1 led to the death (97.3%) of I. dorsalis that was not affected by dsNlthrS-2. Furthermore, neither dsNlthrS-1 nor dsNlthrS-2 could influence the survival of C. lividipennis. CONCLUSION: The results reveal the biological functions of ThrRS in N. lugens in addtion to its protein synthesis, deepening our understanding of tRNA synthase in insects and providing a new method for the control of several rice pests via one dsRNA design. © 2022 Society of Chemical Industry.


Assuntos
Hemípteros , Heterópteros , Oryza , Treonina-tRNA Ligase , Animais , Feminino , Genes vif , Hemípteros/genética , Heterópteros/genética , Masculino , Oryza/genética , Interferência de RNA , RNA de Transferência/genética , Treonina-tRNA Ligase/genética
17.
Insect Sci ; 29(2): 363-378, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34498803

RESUMO

Many holo- and hemimetabolous insects enhance their eggshells during embryogenesis by forming a serosal cuticle (SC). To date, scholarly understanding of the SC composition and SC-related gene functions has been limited, especially for hemimetabolous insects. In this study, we initially performed transmission electron microscopic (TEM) observation and chitin staining of the SC in Nilaparvata lugens, a hemimetabolous rice pest known as the brown planthopper (BPH). We confirmed that the SC was a chitin-rich lamellar structure deposited gradually during the early embryogenesis. Parental RNA interference (RNAi) against Nilaparvata lugens chitin synthase 1 (NlCHS1) in newly emerged and matured females resulted in decreases of egg hatchability by 100% and 76%, respectively. Ultrastructural analyses revealed loss of the lamellar structure of the SC in dsNlCHS1-treated eggs. According to temporal expression profiles, five cuticle protein coding genes, NlugCpr1/2/3/8/90, were specifically or highly expressed during the SC formation period, and NlugCpr1/2/3/90 were further detected in 72 h eggshells extract by ultra-performance liquid chromatography-tandem mass spectrometry/mass spectrometry. NlugCpr2/3/90 were likely three SC-specific cuticle proteins. TEM observations of the SC following parental RNAi against NlugCpr1/2/3/8/90 demonstrated that NlugCpr3/8/90 were essential for SC formation. The study provided an understanding of the SC formation process and SC-related cuticle proteins in BPHs, which offer potential targets for pest control in the egg stage as well.


Assuntos
Quitina Sintase , Hemípteros , Animais , Quitina Sintase/genética , Casca de Ovo , Desenvolvimento Embrionário , Feminino , Hemípteros/genética , Interferência de RNA
18.
Sci Adv ; 7(48): eabf9237, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34826246

RESUMO

The mechanism of sex determination remains poorly understood in hemimetabolous insects. Here, in the brown planthopper (BPH), Nilaparvata lugens, a hemipteran rice pest, we identified a feminizing switch or a female determiner (Nlfmd) that encodes a serine/arginine-rich protein. Knockdown of Nlfmd in female nymphs resulted in masculinization of both the somatic morphology and doublesex splicing. The female-specific isoform of Nlfmd, Nlfmd-F, is maternally deposited and zygotically transcribed. Depletion of Nlfmd by maternal RNAi or CRISPR-Cas9 resulted in female-specific embryonic lethality. Knockdown of an hnRNP40 family gene named female determiner 2 (Nlfmd2) also conferred masculinization. In vitro experiments showed that an Nlfmd2 isoform, NlFMD2340, bound the RAAGAA repeat motif in the Nldsx pre-mRNA and formed a protein complex with NlFMD-F to modulate Nldsx splicing, suggesting that NlFMD2 may function as an RNA binding partner of the feminizing switch NlFMD. Our results provide novel insights into the diverse mechanisms of insect sex determination.

19.
NPJ Biofilms Microbiomes ; 7(1): 43, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986295

RESUMO

A large number of insect-specific viruses (ISVs) have recently been discovered, mostly from hematophagous insect vectors because of their medical importance, but little attention has been paid to important plant virus vectors such as the whitefly Bemisia tabaci, which exists as a complex of cryptic species. Public SRA datasets of B. tabaci and newly generated transcriptomes of three Chinese populations are here comprehensively investigated to characterize the whitefly viromes of different cryptic species. Twenty novel ISVs were confidently identified, mostly associated with a particular cryptic species while different cryptic species harbored one or more core ISVs. Microinjection experiments showed that some ISVs might cross-infect between the two invasive whitefly cryptic species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), but others appeared to have a more restricted host range, reflecting the possibility of distinct long-term coevolution of these ISVs and whitefly hosts. Moreover, analysis of the profiles of virus-derived small-interfering RNAs indicated that some of the ISVs can successfully replicate in whitefly and the antiviral RNAi pathway of B. tabaci is actively involved in response to ISV infections. Our study provides a comprehensive analysis of the RNA virome, the distinct relationships and cross-cryptic species infectivity of ISVs in an agriculturally important insect vector.


Assuntos
Hemípteros/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Viroma , Animais , Bases de Dados Genéticas , Especificidade de Hospedeiro , Insetos Vetores/virologia , Metagenoma , Metagenômica/métodos , Filogenia , RNA Viral
20.
Insect Biochem Mol Biol ; 132: 103555, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33639242

RESUMO

The oviduct serves as a delivery tube for mature eggs ovulated from ovaries to egg-laying sites. Oviduct secreted components play important roles in ovulation and fertilization in mammals, however, no oviduct secreted protein has been characterized in an insect to date. Here, we identified a gene highly expressed in the lateral oviduct of the adult females in the brown planthopper (BPH), Nilaparvata lugens, the most destructive rice insect pest. Western blotting and immunofluorescence analyses revealed that the gene encodes a protein that is specifically expressed in the lateral oviduct as a component of the gel-like material secreted by the oviduct epithelial cells into the lumen of the swollen part of the lateral oviducts. The protein was tentatively named N. lugens oviduct secreted protein (Nlodsp). RNA interference (RNAi) against NlOdsp transcripts caused a failure of the lateral oviducts to deliver oocytes to the common oviduct that was, by consequence, plugged by 1-2 oocytes. Moreover, although oocytes in the Nlodsp-deficient ovariole were not released to the oviduct, they continued to develop, finally resulting in the presence of several matured oocytes in an ovariole. These defects evidently declined female fecundity. Together, our results demonstrate that NlOdsp plays an essential role in egg transport through the oviduct during ovulation. This work deepens our understanding of insect reproductive system and provides a potential target gene for RNAi-based insect pest control.


Assuntos
Hemípteros , Proteínas de Insetos/metabolismo , Oviductos/metabolismo , Oviposição/fisiologia , Animais , Feminino , Fertilidade/fisiologia , Hemípteros/metabolismo , Hemípteros/fisiologia , Controle de Insetos/métodos , Oogênese/fisiologia , Ovário/metabolismo , Controle de Pragas/métodos , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA